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1. ABSTRACT 

A theoretical treatment is given showing how the size distribution of 

I a cloud of particles changes as the result of evaporation, combustion, or 

acceleration. The general differential equation governing the concentra- 

tion of particles as a function of size, position and time is formulated 

for one-dimensional duct-type flows. Solutions to the differential equa- 

tion are then obtained for a number of special problems of interest to 

I evaporation and combustion. 

When molecular transfers control, the equivalent mean diameter for evap- 

oration or combustion of drops is found to be approximately constant with time. 
■■■—■■■■■■■■■■■■■■■———— ———————— ——.—-.— — 

This work was partially sponsored by the Office of Naval Research, Depart- 
ment of the Navy. Reproduction in whole or in part is permitted for any purpose 
by the United States Government. 
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This suggests that the conventional model of a constant number of uniform 

drops of varying size be replaced by a new model having a varying number of 

uniform drops of constant size.  The new model predicts a lower rate of 

evaporation or combustion than the conventional model. 

2.  INTRODUCTION 

The Problem 

Many industrial processes require that a cloud of solid particles or 

liquid droplets interact with the gaseous (or, sometimes, liquid) phase 

in which they are dispersed.  In certain of these processes, there is a 

spectrum of particle sizes, and, moreover, the particles change in size 

by reason of the interaction. Examples include: (a) evaporation of a 

cloud of liquid droplets; (b) growth of a liquid cloud by condensation; 

(c) combustion of either solid fuel particles or liquid fuel droplets. 

Normally the rate of growth (taken of course in an algebraic sense) of each 

particle will depend, among other things, on the diameter of the particle 

itself, under such conditions, the shape of the particle spectrum will 

change as time proceeds, and this naturally introduces considerable diffi- 

culty into the analysis of the problem. Even when there is no change in 

particle size, the spectral distribution of sizes may change; for example, if 

the cloud is accelerated, different size« of particles will accelerate at 

different rates, and the differences in particle speeds will alter the 

relative concentrations per unit volume of the several particle sizes. 

Object and Plan of Investigation 

It is the purpose of this paper to develop some understanding of how 

the existence of a spectrum of particle sizes, coupled with a size-dependent 
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growth rate, influences the processes described above. 

First of all, we shall investigate in what way a given initial spec- 

trum changes shape. This requires formulation and solution of the govern- 

ing differential equation. 

Secondly, we shall look into the question of whether processes of the 

type considered can indeed be treated by means of a simple model comprising 

a-cloud of particles of uniform "equivalent"size. 

Most of the examples will refer to evaporation or combustion, with 

molecular transfer rates controlling. However, it is to be understood that 

the concepts and methods are equally applicable to other processes. 

Previous Work 

In virtually all theoretical investigations of evaporation, combustion, 

t»tc, the actual cloud of particles is replaced by a simple model comprising 

a constant number of drops of uniform but changing size. 

The actual size distribution in the combustion of pulverized coal was 

considered by Hottel and Stewart [l1 , but their treatment of the problem, 

being essentially numerical, was rather cumbersome and not adopted to general 

use. 

Probert [2J treated the size spectrum during combustion by accounting 

for current drops within a certain size interval as the remains of larger 

drops existing at the beginning of combustion. Although not specifically 

stated by Probert, one interesting result obtainable from the calculations 

:/as the finding that the mean size of all droplets present in the combustion 

chamber in the steady state may, depending on circumstances, be either greater 

or smaller than the mean size of the injected droplets. 
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In ehe present paper, the governing equation of the particle spec- 

trum is formulated in differential rather than integral form. Fortunately 

the equation is such that the general form of the solution for some cases 

may be found. The resulting analysis is therefore not only simple and 

straightforward, but applicable to a broad variety of practical problems, 

3.  NOMENCLATURE 

A cross-sectional area of duct 

C, j Ctj Cj constants of integration 

Cp specific heat at constant pressure of surrounding medium 

jy diameter of particle 

jy* constant reference diameter equal to J3~ at the point w/&^| = O 

D dimensionless diameter &/& 

O/ot signifies "substantial" differentiation with respect to time, 

i.e., while following a particle of fixed identity 

EL a constant, X f VG/W CpTT0 

f (jy) see Eq. (13a) 

f U) see Eq. (13a) 

(2 Jh/JJS'     number of particles of size J3" per unit volume of 

space and per unit interval of diameter 

(Q dimensionless form of Q Q  = J>* G/Y\0 

h coefficient of heat transfer; coefficient of mass transfer 

H signifies an arbitrary function of the indicated argument 

J" a function of diameter,  - \ <f <0"/f> (&) 

K constant in molecular growth rate law, R = - Kyj©- 

(^ constant in growth-rate law for radiant heat transfer, R - K, 
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K2 constant in Stokes * Law for terminal velocity, M. a K* J> 

«- latent heat per unit mass of evaporating substance 

W3 mass of gas per unit volume of space 

h total number of particles per unit volume at time "t 

^n number of particles per unit volume lying within the diameter 

interval from Jfr  to jy +-Jjy~ 

M" see Eq. (25b) 

<jf rate of evaporation or combustion 

R growth rate of particle, D *>/bt 

5 longitudinal distance along duct 

S see Eq. (25b) 

t time 

f temperature of particle 

yi temperature of surrounding medium 

M~ velocity of particle 

V total volume of particles in unit volume of space 

<% mass fraction of particle cloud which has disappeared 

oL see Eq. (3) 

(3 see Eq. (3) 

y exponent in R ~ & 

B dimensionless time variable, Kt / J5 

0X dimensionle8s time variable, Kit/,0 

A       thermal conductivity; mass diffusivity 

f       mass density of particles 

f transformed distance for observer moving with cloud, <T = 3-MX 

«XT       temperature difference, T = "Ij -T 
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( ) signifies quantities pertaining to appropriate mean size for 

sane total mass and same rate of change of mass 

( Jj^ signifies quantities for conventional model having fixed number 

of particles of uniform but varying size, with correct initial 

mass and correct initial rate of change of mass 

(    ) signifies quantities at 17-0 

Z.. BASIC CONCEPTS AND DEFINITIONS 

The Partfole-Sjze Spectrum 

Assuming that the actual histogram of the size distribution of particles 

may for purposes of analysis be replaced by a continuous curve, we define 

the particle concentration (or spectrum ordinate), Q   , as G = **•/<!&' 

where Jn     is the number of particles per unit volume of space lying within 

the infinitesimal range of diameters between  dO*  and JJ-hJjO    . Then a 

graph of G  versus jy     (Fig, la) illustrates the size distribution in 

the cloud. The area under a narrow vertical strip, QjJB",  represents JtK   , 

the number of particles per unit volume having diameters within the size 

range of the strip. 

Dimensionle8s Representation. When the shape of *he spectrum, rather 

than the actual values, is of interest, it is convenient to employ the dimen- 

sionless coordinates, jy*G/h>0-   G    a^d «fr/fr* s D   9  where J>    is 

any convenient but fixed value of J5*      (for example, the value of JJ-    cor- 

responding to the initial r.aximum value of (J   ). These normalized co- 

ordinates are shown in brackets on Fig. la. 

Total Ni-mber of Particles per Un^-t Volume. To find the total number 

of particles per unit volume of space, we take the total area under the 
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curve of Fig» la, inasmuch as 

(l) 

Total Volume of Particles. Similarly, the total volume of particles 

per unit volume of space, is given by 

m 

and is therefore found by integrating under the spectrum curve after the 

ordinates of the latter have been weighted by the factor D . 

The Growth Rate 

The most important feature of the present analysis is the changing 

size of the particles. This is described by the growth rate, 

R 5 OJO/Dt 

where the operator D/ot signifies "substantial" differentiation, i.e., R 

is the rate of increase of particle diameter for a particle of fixed iden- 

tity.  For evaporation or combustion, R  would have the negative values. 

The value of R  depends on the type of process (evaporation, combus- 

tion, etc.); on the physical properties of the particles and surrounding 

medium (velocity, density, viscosity, thermal conductivity, temperature 

difference, etc.); and, most important for our present purpose, on the 

diameter J&r    of the particular particle concerned. 

Mean Particle Size 

One may define any number of mean sizes [3]  through the general 
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formula 

&/r- 
-i=rjr 

(3) 

where ot and ß are arbitrary numbers, and «ÖS/p is the corresponding 

mean diameter« For example, with«*» 3 and (3*Z , the value of «O1^. thus 

obtained is the so-called volume-surface mean diameter, i.e., the particle 

diameter whose ratio of volume to surface is the same as that of the actual 

particle cloud. 

Equivalent Mean Size for Evaporation or Combustion. More pragmatically, 

we restrict the definition of mean size to one which is of some use. Our 

real aim is to treat the actual particle cloud as though it were composed 

of uniformly-sized particles. For the processes under consideration, it 

is evident that the actual cloud and the model cloud must agree in two 

respects: they must, instantaneously, have (i) the same total mass and 

(ii) the same rate of change of total mass. Using bars to denote quanti- 

ties referring to the model cloud of uniform drops, these requirements may 

be expressed as 

.ö-s G Jjy =  n j&3 I 0 

«0 

f   JJXRG<*& H   K &* R 

These may be solved simultaneously for &   and *• to give 

~ D3T7*—1 T* *5' 

■ 
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At each instant, the model cloud containing K particles of uniform 

diameter &   will have the same mass and the same rate of evaporation or 

combustion as the actual cloud. Here it is important to note, however, 

that h is not equal to the number of particles in the actual cloud; nor 

does it remain constant with the passage of time. 

Examples of Practically-Significant Mean Sices. Often the dependence 
„ g 

of fi  on do- may be approximated by R~ »O •  The constant tf is zero 

when radiant heat transfer is controlling; it is equal to unity when mole- 

cular transfers control; and it is equal approximately to 0.2 when turbulent 

transfers control. 

From Eq. (4), the mean size is then 

jy s  Jsfe  (4a) 

The two limiting values of J may briefly be anticipated here: 

(1) If R is independent of «©" , as would be the case when the process 

depends on radiant heat transfer, then *e O , and the appropriate mean is 

the volume-surface mean, 

(2) If the process depends primarily on molecular transfers (i.e., the 

relative Reynolds number is very small), then V • I   £. 4 1 » and the 

appropriate mean size is the 3/1 mean, 

(4o) 
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5. DIFFERENTIAL EQUATION GOVERNING 

HISTORY OF PARTICLE SPECTRUM 

Description of Model of Process 

We consider here the flow of a discrete particle cloud in a duct 

or stream tube (the latter referring to the particle flow) of variable 

cross-sectional area, A. The flow is considered one-dimensional to the 

extent that, over each cross-sectional area, the particle concentration, Gt 

the particle speed, M*  , and the particle growth rate, R , are all uni- 

form for each particle diameter, &  . G    , <**»  and R are all considered 

to depend on particle size, longitudinal location, and time, e.g., M**AL(£FJ 5,-fc) 

The Growth Flux 

A necessary preliminary to the differential equation is the deriva- 

tion of an expression which indicates the flux rate at which, as a con- 

sequence of growth, particles cross from sizes smaller than ^0" to sizes 

larger than JO* . 

Consider all the particles smaller than &    in a unit volume of 

space at time t  . During the time interval ^-t , all the particles 

will have grown at their appropriate growth rates. The increase of diameter 

of those particles originally of size J>     is JJfrz RJt  , and the number 

of particles grown larger than cO"  is therefore GR^t (see Fig.lb). 

Dividing this expression by At  , we obtain an expression for the growth 

flux: 

/ Number of particles per unit time and 

1 ■ GR    (5) 
per unit volume becoming larger than jöj 
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ftgyerning pifferentiai.ipo,uat,ion 

We shall make a numerical accounting of only those droplets lying 

within the size range &  to &+J& in the control space of Fig. 2« At 

the location s , lee the area be A and let the properties corresponding 

to & be denoted by M-   t  Q   , etc.; at the exit location s ■*■ <* 5  , each 

will at the same instant be larger by differential increments \JA/Js) AS, 

(W^s) '* (**/>s)js     etc. 

The numerical accounting of droplets in the size range from «0" to 

&+JU&  requires a consideration of the connective fluxes into and out 

of the control space, of the growth fluxes into and out of the size inter- 

val, and of the rate of change of particle number within the control space 

and size interval, 

Convectlve Fluxes. At location s    , the number per unit volume of 

droplets in the size range ■O'" to J*W«0"i8 QJJ&-.    Multiplying this 

by JUL A     , i.e., by the volume of space swept out per unit time by drop- 

lets of this size, ve get an expression for the convective flux entering 

and a corresponding one for the instantaneous flux leaving: 

Rate of entry into control space * M* AG J& (6a) 

Rate of exit from control space » JULAG *&  + ^ (#-AQJi&) <4s   (&>) 

Growth Fluxes.  Particles smaller than &  grow into the size range 

under consideration, and may, for our present purpose, be said to be created« 

Likewise, particles larger than JÖ +d& grow out of the size range and may 

be said to be destroyed. Taking note of Eq. (5). we may accordingly write 

Birth rate within control space ■ G^^^ (7a) 

Death rate within control space = Q R A *s    + ^r (SRA^a/^O"  (7b) 
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Numerical Accounting« The instantaneous number of particles within 

the considered size range and lying inside the control space is equal to 

(GJUT )(A AS ). By setting the time rate of change of this quantity equal 

to the net rate of entry into the control space |~Eq. (6a) minus Eq. (6b)J , 

plus the net rate of creation within the control space [*Eq. (7a) minus (7b)J , 

and simplifying, we obtain the differential equation governing the time 

and space histories of the particle spectrum: 

A^=-A(~Ae>-A;k(GR> (8a) 

or 

«. [ ü£. 4- JUL ^jg  + R AfiL   - Aft _ A 4£ - as. ,AM 

Now, since Q = G fa  s, jy)      , we may write 

JIG JG-   Jt_     . £G^   JIB    +   j6 c^g; 

Specializing this for a group of particles of fixed identity, for which 

«fl-s/rf-fc Ä M~    , and <£&/jtt ■ R , we obtain an expression for the rate of 

change of concentration of particles of fixed identity, identified by 

the substantial derivative notation, in the form 

£-ft-~S*«&--e[*s**£-8]    (8c) pg., 
D 

where the second equality is found by reference to Eq. (8b). 

Equation (?c) shows mathematically what might be deduced as well 

from purely physical considerations: that the spatial concentration of a 



- 13 - 

certain group of particles c? fixed identity (a) is decreased when the 

particles accelerate; (b) is decreased when the particles pass to a sec- 

tion of greater cross-sectional area; and (c) is decreased when the growth 

rate increases algebraically with diameter. 

General Form of Solution 

To determine the time and space histories of the size spectrum, it 

is necessary to find the solution of Eq. (8), subject to the appropriate 

initial conditions of the problem. 

Equation (8) is a linear partial differential equation of first 

order. The theory of such equations [5] shows that the general solu- 

tion of this equation is of the form 

H (/v,./irt> /uj) = O (9a) 

where *r% (t, %t £r Q) « c, , "^fos, J>t Q) « CL    and AT3 fa s, J% 6)- ca 

(in which C, t     Ci      and  c.j arbitrary constants of integration) are 

independent solutions of the associated ordinary differential equations 

JJL  =   J&   - a* m -J6     (9b) 

In practice, the solutions of Eq» (9b) may be troublesome, and may 

indeed not be possible except in special cases where the variables may be 

readily separated. 

We therefore proceed to the consideration of some special cases with 

the aim of discovering typical facts concerning the behavior particle spectra, 
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6. THE UNIFORMLY-MOVING CLOUD 

WITH SIZE CHANGE 

Specification of Model 

Consider the case where all the particles move at the same constant 

speed in a duct of constant area. Such might 6ccur when the particles 

were carried along in a fluid stream and all particles had settled down 

to the constant fluid velocity. The particle spectrum, however, changes 

as the result of evaporation, combustion, etc.  Then we have the simpli- 

fications that JA/Jfao      , ^/).s=0  , and ds^/m ■ O 

Simplified IMissssidal Equation 

With the foregoing assumptions, Eq. (8) now becomes 

Ü +~jf «-&.0N0 (10) 

Transformation to Observer Moving with Cloud. If we consider an 

observer moving with the particle cloud at the speed of the stream, the 

stream and the imbedded particle cloud will all appear stationary. There- 

fore, it is convenient to define a distance coordinate 

<T 5      S~^t (11) 

which is the relation between distance s in the fixed reference frame 

and distance <T in the moving observers reference frame. Applying the 

usual procedure for interchange of variables from the t, $j ^ system 

to the "t;07 JSr  system, we transform Eq. (10) into 

(#U-r*H,, (12) 

In fact, we may drop the subscript •" altogether if we remember that 

Eq. (12) is valid only when the observer moves with the cloud and that 
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l)   1 

the resulting equation applies to a group of particles of fixed identity. 

Steady-Flow Case. It may be noted that Eq. (12) includes the special 

case in which the process is steady in the stationary reference frame 

(i.e., [ ^G/kt] ~0), but of course non-steady in the reference frame of 

the moving observer. 

Motionless Cloud in Stationary Medium. Also covered by Eq. (12) is 

another case of particular interest, that in which the particle cloud is 

motionless in a fixed space, the particles either growing or diminishing 

in size as time proceeds. The distance coordinate (T is then evidently 

irrelevent, and may be struck from Eq. (12) j this may also be seen more 

directly by setting >tu* O in Eq. (10). 

Growth Rate Considerations 

Equations (9b) are indeed simplified, as we have seen, by dropping 

the terms ^«^/As and &A/JI* . To obtain the solution even to simplified 

cases, however, we must know how the growth rate R depends on & and *t • 

Now R depends on *t to the extent that the physical properties of the 

fluid medium (such as the temperature, concentration, thermal conductivity, 

etc.), and of the particles, partly govern the rates of evaporation, com- 

bustion, etc., and these properties may all be functions of time. For 

example, the temperature difference forcing heat transfer depends on how 

much has already been evaporated or combusted«» 

Since the form of the R-"t relationship is not known in advance, it 

must be found by simultaneously solving the spectrum equations and the 

equations goverring the changes in properties of the fluid medium and of 

the particles. Consequently,the solution must involve such auxiliary 

relations as the energy equation, stoichiometric equations, heat trans- 

fer relationships, etc., inasmuch as these enter into the determination 
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of the rates of interaction -between the cloud and the fluid medium as 

well as of the properties of the fluid metfium. 

Case for which  R«{^) f»(t) 

Although the solution for ^ as a function of -t and &  cannot be 

found for the general case until the R-t relationship is known, we can 

avoid the simultaneous solution of the spectrum and fluid medium equa- 

tions by assuming that the growth rate can be written as 

Df = R . f,(X» fz (t) (13a) 

wherein the function i]   depends on Jfr alone and   iz     on  t alone» 

With this assumption we are now able to first solve the spectrum 

equations, and then determine the complete relationships for the inter- 

action between the particle cloud and the medium. The physical situation 

to which Eq« (13a) applies is the case of a uniformly moving cloud and 

medium in which (1)  all particle properties are the same except the size, 

and (ii) the properties of the fluid medium appear the same to each particle, 

Many real problems are approximately of this type; see, for instance, the 

example given in Section 8# 

General Form of Solution for Uniformly-Moving Cloud. Referring to 

Eq. (9b) again, the solution to the J"t, Js    equation is now 

S - JU.±   = o- = C 

the Jit, J& equation has the solution 

where      J~(jj)  ~ - [ J/>A (13b) 

and the dJ5   , 4G    equation integrates to 
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Therefore, from Eq. (9a), the complete solution to the problem must be 

of the form 

G--^H[r' (W.V*)] 
(14) 

where H is an arbitrary function of the arguments indicated. 

Method of Determining Form of Arbitrary Function. To determine the 

precise form of the function H in a particular case, we must have *f, and 

fz     expressed algebraically in terms of dO* and -t , respectively, and the 

relationship between Q f  J& , and «" must be known at some time, say 

"t - O .  Putting this latter relationship into the form indicated by 

Eq. (14)i one obtains the solution at any other time merely through re- 

placing: T at "t»o by (X+ [ \&X      ) at any other time. 

Graphical Interpretation of Solution. The solution represented by 

Eq. (14.) has a simple graphical interpretation.  Focussing attention on 

a particular part of the cloud, i.e., Q" = constant, we suppose that the 

spectral curve G(^) is known at time -t = O   .   Let this function be 

plotted (see dashed curve in Fig. 3) in the form G f,  versus J*.  At 

any later time t, , the corresponding curve will be displaced without 

change of shape, as indicated by the solid curve of Fig. 3«  According to 

Eq. (14)» the value of Gf, for a given value of T  at time t, rmi3t be 

equal to the value of G-fi  at *t = 0 corresponding to a value of T J^JV* 

Hence the curve for time "t, is simply displaced leftwards from that for "t«0 

precisely by the magnitude  I i^ 4t 

fropagative Character of Solution. The foregoing features indicate 

a propagative behavior to the solution.  For a given portion of the cloud, 

the product G "Fj  , is seen to be constant for combinations of &   and "t" 

corresponding to a constant value of the function ( T+ J fjt   ). 

By separating variables and integrating between the limits *t = O , 

JV- jy "nd -t»T , J>*&,  we find from Eq. (13a), for a particle 
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of fixed identity, 

where UC, is the value of J" at time "t , and 7/v is the value of J" for the 

same particle at t°0 . In other words, particles of fixed identity have a 

J5 , -t history specified by a constant value of T+J fr 4t  , which, by 

Eq. (13c), in the value XT^. associated with the particle at time zero. 

Then Eq. (H) may be interpreted as meaning that the product öf, remains 

constant for particles of fixed identity. 

Thus the propagative behavior noted above is associated with the fact 

that the initial concentration of particles in a certain size range controls 

the concentration of the same particles, but in successively different size 

ranges, at all later times. 

Alternative perlvation of Solution by Physical Considerations.  The 

propagative behavior may also be brought out by a derivation of Eq. (H) 

based on more physical considerations. Consider a group of particles 

initially (-t=o ) lying within a certain narrow size range, rf^,a . Since 

the number of such particles at time t  is equal to the number at "ts 6  , 

we may write 

Jin*   G^.^. - G«.**t 
t* so * 

where ^Ä and JO^  are, respectively, the initial and final widths of the 

size interval, and G^.   and G&   are the concentrations cor- 

responding to particles of size «ö"t%0   at time t = o  and of size *Ot at 

time ±  , respectively. By the definition of T JEq. (13b)J , 

J*.. = - f, (<0 -^„ ; JJ>±  = - f, (*J JLT^ 

But, for particles of fixed identity, Eq. (13c) holds. Differentiating this 

at constant time, we have <J J^, * ^^Ot,* • Now» assembling the foregoing 

equations, we get 
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which states that the product G f,  , associated with particles of size .&- 

at time %  is equal to the product Gff associated with the size £*t,0 be- 

longing to the same particles at * = o. But we have already seen that the 

identity of a certain group of particles is marked by a &  -t relationship 

given by Eq. (13c), Consequently, we may conclude that the product Q f, 

is a function only of (T + ^ **<**) , which is exactly what is claimed by Eq.(H). 

Case of Constant and Uniform Growth Rate 

If the growth rate is the same, and constant, for all drops, the 

integral J* of Eq* (13) is simply T= - &/Rf  and the general solution 

to Eq. (15) is GR* H(O--a-t), which may be expressed alternatively as 

Q x.   H, (•Or- Rt}. This states exactly what the assumption of constant 

growth rate for all particles implies, namely, that the distribution curve 

of G   vs. •©• marches across the graph with unchanged form, the displace- 

ment at any instant being Rt . 

A possible application of this result is to problems in which the 

growth rate is controlled by radiant heat transfer. An energy balance 

in that case shows that R is independent of particle size. 

YbXhtä  ?f Treating Formation of flew Props 

When the growth rate is positive, as in condensation, attention must 

be given to the fact that new drops may constantly be born. The type of 

solution already discussed applies only to those drops already present 

at time zero. Assuming that, at each instant, the birth rate of new 

drops per unit volume of space is known, we may equate this to the in- 

stantaneous value of OR  corresponding to JO*O . This in turn yields G&-c 

as a function of time. Consequently, in respect to the new drops, the 

form of the arbitrary function in Eq. (14.) may be determined from a knowledge 
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of its variation with t for the value of "J~* corresponding tc ß =- O , 

and thus the general solution for the spectral history of the new drops 

may be found, 

7. EVAPORATION OR COMBUSTION OF A CLOUD IN A VERY LARGE MEDIUM 

gescr.ipt.lon of Process 

To illustrate more completely the method outlined, and also to ob- 

tain some practical results of value to an understanding of evaporation 

and combustion, we now take up the special case of a stationary cloud 

evaporating into or burning in a very large, stationary, gaseous medium. 

As indicated by the preceding section, the results are also applicable 

to each portion of fixed identity of a uniformly-moving cloud. In this 
j 

section we shall assume that the mass of the medium, relative to that of 

the cloud, is so large that the process does not materially alter the 

properties of the medium. 
i 

With this assumption, the growth rate for any portion of the cloud 

(i.e., for fixed r    )  will depend only on diameter, and we may at once 

set f2,(^*1 .  Then, remembering that R is now only a function of /> 

Eq. (14) becomes 

j G*-k-H(3- + *> (15) 

where H is an arbitrary function of the indicated argument.  Alter- 

natively, for any fixed portion of the cloud, Eq. (15) states that the 

product G R (which varies only with &) depends only on the combined 

function of JO"   and t denoted by ( J* +-"t ). As before, the precise form 
I 

of this dependency may be found by expressing G(&)   at t »0 in the form 

of Eq. (15), and then replacing U~(&)   where it appears by/X(i» + "t) . 

Thf» HoJ-ecu^ar Growth-Rate Law 

After the particles have reached a quasi-steady temperature, both 

evaporation and combustion are controlled by the processes of heat 
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transfer nnd mann diffusion. If we assume no relative motion between the 

particles nnti  trio medium (or, more generally, that tho Reynolds number 

based on the relative speed is small), dimensional considerations require 

that the coefficients of heat transfer and mass transfer follow the law 

h&//( Ä constant, where h is, respectively, the coefficient of heat 

transfer or mass transfer, and A  is, respectively, the thermal con- 

ductivity or mass diffusivity £4.] . 

Since the rate of the process, and, consequently, the rate of disap- 

pearance of mass from each particle, is proportional to the coefficient 

V\  , to the surface area, and to differences in temperature and concen- 

tration, we may write that Xf^OG/Dt)"  h«&*. Then noting that K &  is 

constant, we find that 

R s D^/Dt = - K/o- = f, (16) 

where K is a positive constant containing such ouantities as pure numbers, 

the density and latent heat cf the particles, the temperature difference, 

and the thermal conductivity and mass diffusivity of the medium. Thus we 

me*/ evaluate 

Moreover, integration of Eq. (16) for a particle cf fixed identity yields 

\   Ü4&   » -Kj.lt;    jy    _ &   = z K± (18) 

where it is to be understood that &. m _        is the diameter at ± =0  of a 
~* — o 

particle having the diameter i> at time t  . 

General Solution 

According to Eq. (15), the general solution to the problem considered 

here is 

G = Jfr H [£■*+*«] (19a) 
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Rearranging this in dimensionless form, we have 

G=   &*G/*.*    lfi/**)*[(fi/**f+*^     DH[lDl+ifl]   (19b) 

where £ = Kt/e*  . The advantage of the form shown in Eq. (19b) is 

that it removes the results from any particular scale of time, size, or K , 

and expresses them in their most general form in terms of the dimension- 

less time, &   . 

A simple and rapid method of graphical solution is suggested by 

Eq. (19b). At time t*o , the size distribution is plotted in the form 

of C/lD versus ID  . Then, for any othex time t-t| , the corresponding 

curve may be found merely by sliding the original curve leftwards by the 

amount 2.0 = 2.**\/j}*t  as illustrated by Fig. 4. Then it is a simple 

matter to regraph the new curve for time "t, in the conventional form 

of G versus D or Q  versus j3" . 

Analytic Solution of Typical Case 

These are several types of size distribution whi^h may represent 

atomized sprays or milled solid particles [6] . All have the features 

that the curve of 6 versus ß   starts from zero, increases with &  and 

then, after reaching a maximum, approaches zero again asymptotically. 

Initial Size Distribution. We consider now a specific type of dis- 

tribution at *-0 that embodies the foregoing features and that allows 

us to draw significant conclusions by simple calculations. The distri- 

bution postulated at t-o ±Q  represented by rf/ 

&*G   ■ n0 (*/*•) e *    or <G * D e. (2°*) 
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i '■ 

For very small values of JP" this giv-js a linear distribution, while for 

large values the concentration approaches zero very rapidly. The con- 

stants in the equation are chosen so that the initially most populous 

particles (i.e., those of maximum G    ) are of size j&  , and the total 

number of particles initially is ft© . For the process considered, the 

instantaneous appropriate mean size is given by Eq. (4c). When the 

latter is evaluated for the distribution of Eq. (20a), we get S= */&*' = JT*» 

where it is understood that ID  means, for this case, ID a/,  • 

Size Distribution at Any Time. Comparison of Eq. (20a) with Eq. (19b) 

shows that the form of H at "t =0 is 

Consequently, at any other time t  , the spectrum is given by 

£ , D « *     4
=  e  De (20b) 

This remarkable result shows that the size distribution considered 

remains unchanged in form, the concentrations of particles of all sizes 

being reduced by the constant factor e 

Variation of Equivalent Mean Size. Performing the integrations of 

Eq. (£c), we get the striking result that fl5=Vj at an£ time.  That is, 

t.Vm Appropriate mftfln alga ^o^s not change, even though all particles are 

becoming smaller. The explanation of this seeming paradox is that the 

small particles grow smaller more rapidly than the large ones, and ul- 

timately disappear entirely; as time proceeds, therefore, a relatively 

greater proportion of large particles remains. 

Variation of Total Number of Particles.  Frcm Eqs. (1) and (20b), we 

find that the total number of particles decreases exponentially with 

time, i.e., _ * 

(20c) \*  * 
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Variation of Fraction of Mass Disappeared. The fraction of the 

total volume of all particles lost, which is a measure of how much mass 

has disappeared through evaporation or combustion, is found from Eqs. (2) 

and (20b) as 

I- < v     -d 
OL 5  Fraction Disappeared = I- v = '" e       (20d) 

Variation of Rate of Evaporation or Combustion. The rate of evapora- 

tion or combustion is proportional to the rate of disappearance of total 

volume of all particles, i.e., a.^-'V<*t # From Eq. (1) and (20d), 

therefore, we find that this rate also varies exponentially with time, 

(20e) f/ft      =  e 

Calculations for Conventional Model Containing Fixefl Number of 

Particles of uniform but Variable Size. In calculations of evaporation 

and combustion it is usual to assume a model in which there is a con- 

stant number of particles of uniform size, the initial uniform size 

being set equal to the appropriate mean size of the initial spectrum. 

To see how this model compares with the true state of affairs, we shall 

determine, for this model, the expressions corresponding to those of 

Eqs. (20d) and (20e) for the spectrum of Eq. (20a). Let jC^and Tx^ 

denote respectively the uniform but variable particle size and the con- 

stant number of particles for this model. Then by definition, 

A^t«»/^"  s V*  Furthermore, from Eq. (18), 
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I 

The fraction of the totaü volume of all particles which has disappeared 

at time "t  is given by 

3 

(ab) 

and the rate of evaporation or combustion (since oL^-^v^t  ) is> in 

proportion to the initial rate, 

(r/t.L*  (-*)* (21o) 
Comparison of Conventional Model with Actual Cloud. Equations (20d), 

(20e), (21b), and (21c) are graphed in Fig. 5. Since by definition, the 

initial mass and Initial rate of loss of mass are identical for the 

spectrum and model,Fig. 5 shows directly the inaccuracies in the model. 

At the beginning of the process, the two rates are equal, and consequently 

the slopes of the 7f-curves are the same. As the process proceeds how- 

ever, the rate calculated for the model is at first greater than the true 

rate; this occurs because, in the true spectrum, the instantaneous mean 

size does not change, whereas in the simple model, all particles grow 

smaller and consequently acquire a larger growth rate (in the absolute 

sense). After about 75£ of the mass has disappeared (according to 

spectrum calculations), the rate calculated for the model becomes smaller 

than that for the spectrum; this happens because the excessively high 

rate at early times so reduces the particle diameter (and the surface 

area) of the model that ultimately a point must be reached where the rate 

becomes less than that of the spectrum. Notwithstanding the latter 

remark, at any instant the fraction disappeared is greater for the model 

than for the spectrum. Indeed, at O c 1.5 , the particles of the model 

have entirely vanished, while in the spectrum they never entirely vanish. 
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To summarize, the model of evaporation or combustion in which the 

spectrum is represented by a constant number of particles of uniform but 

variable size yields too high an estimate of how much mass will have 

disappeared at any given time. The table below gives some significant 

comparisons. 

Model    Spectrum 

Per cent disappearance for 0    -  .J55       50%      4.2.6% 

Per cent disappearance for 6    = .905       75%      59.5% 

& for 50% disappeared .555      ,694 

0   for 75% disappeared .905     1.386 

B  for 100% disappeared 1.5       «a 

Proposed New Model of Particle Cloud. It is evident that the con- 

ventional model incorporates an unwarranted optimism concerning the time 

required for the process to occur. A more accurate model is suggested 

by the fact that the instantaneous IDy, corresponding to Eq. (20b) is 

constant. That is, the actual spectrum may be replaced by a cloud of 

particles of variable number but of uniform and constant size, with the 

number of such particles decreasing at a rate proportional to the rate 

of evaporation or combustion. Such a model, for the initial spectrum of 

Eq. (20a) would give rates identical with those of the true spectrum. 

At first it may seem peculiar to imagine particles vanishing one by one, 

without dimunition of diameter; but when it is recalled that the model 

is in any case a fiction to enable easy calculations, and that the number 

of particles in the model cloud has no physical association with the 

number in the true cloud, the seeming strangeness disappears. 

It cannot be claimed that the model suggested above is identically 

correct for other particle-size distributions, or for cases where R is not 

inversely proportional to ^> .  However, since the spectral curve of 
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Eq. (20a) is at least typical in shape, and since R generally varies 

with Ö   to a power lying between 0 and -! , it seems safe to say that 

the conventional moc'.el incorporating a constant number of drops is gen- 

erally over-optimistic in its estimate of rates, and that the new model 

proposed is often more realistic. 

Results for Nuklyama-Tanasawa Distribution 

To investigate the two points mentioned in the preceding paragraph, 

we now examine the Nukiyama-Tanasawa distribution, accepted as best 

representing that of liquid sprays atomized by air jets \ß\  . The dis- 

tribution equation at ± » O is 

t -2 (*/**; .ID 
&*G = «*o [*/&*)   e.     or G - 4 ID ®        <22a> 

where the constants are so chosen that tt0 is the total number of drop- 

lets and G is a maximum when ID * I , all at -t - 0 . 

Results for R = - K/ff".   Referring to Eq. (19b), the solution for 

the size distribution at any time "t is given by 

Q  = -« ID (ID +2ÖJ a (22b) 

Inasmuch as the terms in 6    cannot be brought out in a single factor, 

it follows that the shape of the spectrum changes with time. A few 

of the spectral curves are plotted in Fig. 6a, which shows that the 

value of D for which G   is a maximum increases slightly with time. 

Evaluation of Eqs. (2) and (4c) for the size distribution of Eq. (22) 

is somewhat lengthy, but the results can be expressed in terms of the 

second, fourth and sixth derivatives of the modified Bessel function of 
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the second kind of order zero. The results of these calculations are 

plotted in Fig. 6b, which shows that the appropriate mean diameter for 

this distribution actually increases with time. This result is perhaps 

not too surprising after having seen the curves in Fig. 6a. This in- 

crease in mean diameter, however, is not very large (about 11% when the 

cloud is 15% evaporated). 

Fig. 6c shows the fraction of mass disappeared vs. time for the 

spectrum as well as the corresponding curves for the conventional model 

with a constant number of drops of uniform but variable size, and for the 

new model of constant diameter drops but varying number. The curves 

illustrate clearly the error in using the conventional model for evapora- 

ting drops. The proposed new model does not give results that coincide 

exactly with the spectrum calculations $ they are in error in the same 

direction as the conventional model. This is expected because V   actually 

increases somewhat during evaporation and therefore the rate of change 

of mass is less for the spectrum. However, the fraction evaporated 

predicted by the proposed model is better than the conventional model 

both qualitatively and quantitatively. 

Results for R = Constant. The results shown in Fig. 6 are for the 

case R ~ &    . To see what effect the nature of the growth-rate law 

has on the results, Fig. 7 shows curves analogous to those of Fig. 6, 

for the same initial spectrum, but with R = constant ■ K(# The two 

cases comprise the two extreme forms of the growth-rate law, for in the 

general relationship R ~ &        , t   lies between zero (radiant heat trans- 

fer controlling), and unity ''molecular conduction and diffusion controlling). 

Note that the appropriate mean diameter for ¥-0 is Dji • 
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Figure 7a shows the Nukiyama Tanasawa spectrum as a whole moving 

horizontally towards the origin. This result was previously derived fox» 

any spectrum if the growth rate is constant and uniform. In Fig« 7b, 

the mean diameter IDj/2 is shown as a function of 0,2 K,-t/j&*  • In 

this case the mean diameter decreases as the drops evaporate. Finally, 

in comparing the fraction evaporated curves in Fig. 7c, we see that 

once more the conventional model is over-optimistic about evaporation 

rates. The proposed model is also in error, but the magnitude of the 

error is smaller, and in the opposite direction. The proposed model 

again matches the spectrum result qualitatively over the entire range« 

Spectrum with Finite Diameter Range 

In the preceding examples the diameter range for each spectrum 

ranged from zero to infinity. As a consequence, an infinite amount of 

time is required to evaporate all the droplets. Since the upper diameter 

limit is finite in any actual case, we now investigate this effect using 

the molecular growth-rate law of Eq. (16) and the initial droplet spec- 

trum of Eq. (20a). Thus at t = ^ve have 

The correct mean diameter is given by 

f0~» -1% 

where  D^ifl not constant but can be expressed as 

(D s      |p - 2.0 



- 30 - 

The results of these calculations as well a3 the results of using the 

conventional model are shown in Fig. 8. 

Choice of Initial Spectrum 

The initial particle distribution G for any case is usually ob- 

tained by fitting a curve to experimental data. This procedure suggests 

trying to fit a curve of certain algebraic form such that later cal- 

culations for &"   yield the result &*-  constant. This objective can 

be achieved for the case of f( (J$) ** - &      if we fit the data to the 

form ¥ % 

where a and b are arbitrary constants. Equation (20a) is a specific 

example of this for the case of rs I . 

Conclusions of Droplet Evaporation Study, 

The general results obtained from study of Fig. 6, 7 and 8 are that: 

i) The conventional model is optimistic about evaporation rates 

of the spectrum. 

ii) The proposed model is more accurate in predicting evapora- 

tion rates, at least for ID e  and Q> €   spectra, for the range of 

growth rates from radiation controlling ( *=■ ö ) to molecular phenomena 

controlling ( *s '  ) the process. 

iii) If only a small part of the mass of the droplet spectrum is 

to be evaporated, it is immaterial which model is used because the dia- 

meter variation is so small (jö-~ cube root of mass remaining). 

iv) For evaporation of the last remnants of a droplet spectrum 

with H>m-Jl
a * ,  the results of the conventional model differ radically 

from those of the spectrum and of the proposed model. The latter two 
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I I ! 

indicate that 100$ evaporation is reached only as "t approaches eO    . 

If, however, H>^#l, is finite, the spectrum analysis shov/s 100$ evapora- 

tion is reached in finite time while the proposed modex still requires 

infinite time. Except for this question of time for 100$ evaporation, 

the difference between the results of the proposed model and of the 

spectrum analysis is small if ID*»* > 3 . The physical reason for this 

behavior is that very little of the mass in the droplet spectrum we 

are considering is in the range from ID s 3 to D s «o  . If the ques- 

tion of time for 100$ evaporation is of importance, the answer can 

easily be obtained by considering Just the evaporation of the largest 

drop. 

g. EVAPORATION OR COMBUSTION OF A STATIONARY 
CLOUD IN A "SMALL" MEDIUM 

Form, of Qrpwth-flate lay 

When the growth rate depends on time, as for example whe~ evapora- 

tion or combustion modifies the temperature and other properties of 

the medium, it is not valid to let fx (-t) =1  in Eq. (13a). 

In this event, if we retain the growth-rate law Rs f,(Ä)fL(.t) » 

with f, (Jfr) ** &      i Eq, (H) shows that all the results presented in Eqs. 

(19), (20), and (22) and in Figs. 5 and 6 remain valid, provided only 

that wherever t  appears it must be replaced by J ft(0 <*** 

Case of. Evaporation. In, a Oasegys Ffeflto 

The details of completing the solution will vary from case to case, 

and may best be illustrated by a specific example. Consider evapora- 

tion into a cloud of gas, with the gas temperature falling by virtue 

of the latent heat absorption. Then an energy balance for a droplet 

(neglecting sen?:ibl* heat effects), equating the rate of heat transfer 
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to the rate of latent heat change, yields 

whence, with the postulate of molecular heat conduction (k^oA s 2. ) we get 

R. Djy/ot = -*xx/f*jy (23a) 

Neglecting the variation of \     with time, we may express this as 

Ra f.(-ÖJf*(t)  where f, = —1 Xto/f*«0-and £
5 ^£ 

An energy balance between the entire droplet cloud and the entire 

gas mass, equating the total latent heat supplied to the decrease of 

enthalpy of the gas, gives 

V(VV =  f^O- $.) (23b) 
Moreover, we have, by definition, 

r■ m Tr T - (TJ.-T) - frj.-Tj = r. - (-r^ 

and thus we obtain 

where 
E 5     f*V0/mjCPrt 

Now, for each value of J ft(*)dfcf = [(^/fAJt   »  the value of oc 

is known either from an analytical solution fe.g., Eq. (20d) |  or, 

if necessary, from a numerical integration, keeping in mind that the 

value of O     appearing in, say, Eq* (20d) is now to be Interpreted as 

(K/&*%)jJ$fa) **     .      Moreover, Eq. (23c) gives a relationship 

between ^/?* and o*> , assuming of course that the constants t« , 

•C.  , f  • cp and \/niy are all known to begin with. Consequently, 

we have in hand a relationship between t/r# and flF/t^d*       • Then, 

from the expression 
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we may separate variables and integrate between t = 0 ,t»to, and -t«t , 

T«T , thus getting the identity 

t.  f * An fcM" J(r*,) 
Since the differentiation and integration required by the right-hand 

side of this equation may be performed analytically or graphically with 

the help of the aforementioned relationship between X/C0  and |(T/co)<*t 
, «*• 

we may solve for t as a function of t/t0 , either analytically or 

graphically. Then, since oc  is connected with T/t0 through Eq. (23c), we 

have our solution finally in the desired form of % versus t  . 

Specific Example. For example, with the rather simple» algebraic 

relationship of Eq« (20d), all the operations may be performed analyti- 

cally, and yield finally, for the relationship between fraction evaporated 

and time, 

With other spectra the operations indicated above may have to be 

carried out numerically or graphically, 

9. STEADY STATE EVAPORATION OR COMBUSTION IN DUCTS 

Specification of Model 

Let us now consider the case of evaporation or combustion in steady 

flow in a duct, such that, at every station, all properties are con- 

stant, i.e., ^/6t«0 . 

Purthermore, let us suppose that the particles are very small, and 

therefore that all have virtually the same speed as the medium at all points, 

i.e., A*.  = -u- (s)   only. For the same reasons as given in the preceding 

i 
I 

I 

1 
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section, let the growth rate be represented as Rs "F, (^0) f ^ (s) # 

General Solution 

With the foregoing assumptions, the application of Eqs. (9) yields, 

for the general solution to the problem, 

G - e"  H(J + SJ (25a) 
where 

xsJW^i  3iJfcA)*; jftflMfff-+ * f/ ^(25b) 

and H is an arbitrary function of the argument TT + £ . To evaluate 

the N integral, it is necessary to express %    as a function of ^0* through 

the equation «T+'iS = 1"jiKO  , where J    is a constant of integration, equal 

to the value of «T at s * o 

The actual treatment for particular cases is similar to that of the 

preceding section, where &  and "b were the independent variables, except 

that now & and 3   are the variables. 

Special Case for which **• A    = Constant 

When the density of the medium is not appreciably altered by the 

evaporation or combustion, and when the particles follow closely the motion 

of the medium, continuity requires that the product M.A  be nearly constant. 

Assuming that it is in fact constant, the integral H becomes 

And the solution takes the form 

Gf, = H(J*-r5J (26) 
which bears a striking similarity to Eq. (14). 

General gpluUvn for Mags fraction Evaporated 

The general solution for the spectral distribution as a function of 

distance, given by Eq. (25), may be very difficult to carry through. However, 
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should it be of interest only to discover how the fraction evaporated 

or burned varies with time, simple physical reasoning shows that the 

results of the preceding section (embodied, for example, in Eq. (20d) 

and Fig. 6) are immediately applicable.  If, as is the case with the 

assumptions employed here, each portion of the particle cloud is assoc- 

iated with a given mass of the medium, an observer moving with a given 

portion of cloud and medium would see the same events that would be 

seen if the cloud and medium were stationary. The only formula needed 

is that relating the distance moved by the observer to the time elapsed, 

and this is easily furnished by s* JM-4±    . with this transformation, 

all the results of the preceding section connecting fraction disappeared 

with time may be used in the present section for connecting fraction 

disappeared with distance. 

10.  STEADY FL0Wr ttlTH NO CHANGE IN SIZE 

Model of Process 

Suppose that a cloud of particles travels in steady flow down a 

duct, with no interactions which might cause any particle to change in 

size. Then the concentration, G   ,  might change because of (i) a change 

in cross-sectional area of the duct, or (ii) a change in the speed, M~  , 

of the particles of size & in question. 

With the foregoing assumptions, ^/6t=0 and R*o . Accordingly 

Eqs. (9b) are 

J±   -   A& Z*J> 

The integrals of these equations are 

and 
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and therefore the solution is 

where f (jö) signifies some function of J&-   . 

Physical Meaning.of Solution. This solution has a simple physical 

meaning. Since G is the number concentration per unit volume, G A>u. is 

the number of particles in the size range from JO" to &+J& , crossing 

each section per unit time. Consequently, the solution states that, 

for any particular size group, the number flux is the same at all cross- 

sections.  It would have been possible, therefore, to write down the 

solution above simply by noting that the number of particles in each 

size range is conserved. 

We note from the solution that the number concentration per unit 

volume, Q   , tends to decrease if either A  or M>   increases. 

EzamLs of Motion In Incompressible Medium, yjth glow Che ages in grogs-Section 

Suppose that the particles are travelling in an incompressible medium, 

and that the changes of cross-section are so moderate that all particles 

follow exactly the motion of the medium. The the product -*«-A is constant, 

and it follows that the concentration curve, G {&)  , is the sane at all 

cross-sections« 

Example of Motion in Incompressible Medium,_wj.th Rapid. Contractio.IL.o.;C 
Cross-Section 

By way of contrast, let the medium, assumed as incompressible, 

accelerate through an abrupt decrease in cross-section, as in Fig. 9a« 

For reasons of particle inertia, the smaller particles will accelerate 

from 1 to 2 more rapidly than the larger ones. Ultimately, however, 

all sizes of particles will arrive at the same speed at section 4. 
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Furthormore, the reasoning given previously requires the spectrum at 4 

to be the same as at 1.  These arguments show that the spectral curves 

for sections 1, ?; 3, and 4 will change in the general way indicated 

by Fig. 9b. 

11.  fftEE-FALLING AND EVAPORATING DROPLET CLOUD 

j Model and ffoluilcn fif Process 

Imagine a cloud of falling and evaporating drops. Assuming a steady 

state, we may set ^/^*fc aO .  Moreover, if each drop is very nearly at 

its own terminal velocity at all times r we may suppose -u- to be a function 

of &  only, and thus ^M-fa^O  .  If, as well, the surrounding medium is 

f very large, we may suppose R to depend on JO" alone. Then, noting that 

IJA/JJS ■ o , Eqs. (9b) become 

The integral of the ist A&   equation is 

: i 

5 -*   =  <- where      $ (jy) ~ j gfe ä * 

and the integral of the  &&t 46      equation is 
GR =  c, 

Consequently the general solution is 
GR=H(s-5) 

in which the arbitrary function H  is found from a knowledge of the 

function 6 R at the location 5*0 . 

Example for Very Small Droplets (Low Reynolds Number) 

To illustrate, suppose that the droplets are so small that the evap- 

oration occurs by molecular diffusion and the terminal velocity is set by 

Stokes» law of drag. These lead to the laws 



- is - 

where K and Kt are dimensional constants depending on the properties 

of the droplets and the medium. The function {3  may now be evaluated as 

and the general solution showing the spectral distribution as a function 

of S     is seen to be 

Therefore, with a knowledge of how G/ö*    depends on &     at 5 = 0 , 

it is a simple matter to find G {&)   at any other value of S 
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13. CAPTIONS TO FIGURES 

Fig. 1, (a) Spectrum of particle sizes, illustrating nomenclature, 

(b) Illustrates growth flux formula. Shaded zone shows . 

number of droplets which, during the time Jt   , have grown 

from sizes smaller than &  to sizes larger than &~  • 

Fig. 2. Control space for formulation of differential equation. 

Fig. 3» Graphical interpretation of spectral history for stationary 

cloud with the growth-rate law R * fi(^>jft(t) 

Fig. 4« Graphical solution for stationary cloud evaporating or burn- 

ing in large gaeeoue medium, with R » - H/JO" 

Fig. 5« Comparison of fraction disappeared and race of disappearance, 

both vs. time, for initial spectrum of Eq. (20a) (solid curves) 

and for simple model comprising a constant number of drops of 

uniform but variable size (dashed curves). 

Fig. 6. Results for Nukiyama-Tanasawa spectrum of Eq. (22a), with R s -K/jD" 

(a) Spectral distributions at various times. 

(b) Variation of equivalent mean diameter with fraction 

evaporated or burned. 

(c) Fraction evaporated or burned vs. time for the spectrum, 

the conventional model, and the new model. 

Fig. 7. Results for Nukiyama-Tanasawa spectrum of Eq. (22a), with con- 

stant value of R • 

(a) Speotral distributions at various times. 

(b) Variation of equivalent mean diameter with fraction 

evaporated or burned. 

(c) Fraction evaporated or burned vs. time for the spectrum, 

the conventional model, and the new model. 

Fig. 8. Variation of mean diameter with fraction evaporated or burned 

for spectrum of Eq. (20a) with an upper diameter limit D 

Fig. 9. Change of speotral distribution when particles carried by 

incompressible fluid pass through contraction in duct. 
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